o UNIVE,

%

Yo

n- W{W/

A

28/ A

1579+ A

4’6‘!3 . gﬂf’

NG

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title

Code

PROGRAMMING LANGUAGES AND OBJECT-ORIENTED PROGRAMMING

Academic staff

Core academic unit(s)

Coordinating: assoc. prof. Vytautas RudZionis

Kaunas Faculty
Institute of Social Sciences and Applied Informatics

Other: Muitinés g. 8, LT-44280 Kaunas
Study cycle Type of the course unit
First Mandatory
. Semester or period . .
Mode of delivery when it is delivered Language of instruction
In class 2 semester English
Requisites

Prerequisites:

Students must have mastered the basics of algorithm
theory and data structures, computer architecture, and
programming.

Co-requisites (if relevant):

Student’s workload
(total)

Number of ECTS credits
allocated

Contact hours Individual work

5 133

48

85

Purpose of the course unit

Develop the ability to program in high-level programming languages, develop the ability to understand and analyze
their organizational principles and programming paradigms (procedural and object-oriented programming); develop
the ability to understand, analyze, and apply the principles of object-oriented programming and the principles of
graphical interface design; develop the ability to create simple software applications and generate program code.

Learning outcomes of the course unit

Teaching and learning methods

Assessment methods

Will be able to transform an algorithm
presented in program code, be able to
select the most effective software tools
for a given algorithm.

Lectures, tutorials, laboratory work,
problem solving, active learning
methods (algorithm analysis, program
prototype writing, system prototype
design)

Laboratory work, laboratory
work defenses, independent
systems analysis, problem
solving, test work, exam

Will be able to apply object-oriented
programming principles to the given
algorithm, be able to select more
effective program development methods.

Lectures, tutorials, laboratory work,
problem solving, active learning
methods (algorithm analysis, program
prototype writing, system prototype
design)

Laboratory work, laboratory
work defenses, independent
systems analysis, problem
solving, test work, exam

Will be able to write medium-complexity
programs, evaluate program compliance
with specifications, and know some of
the best programming practices.

Lectures, tutorials, laboratory work,
problem solving, active learning
methods (algorithm analysis, program
prototype writing, system prototype
design)

Laboratory work, laboratory
work defenses, independent
systems analysis, problem
solving, test work, exam

Individual work: time and
Contact hours .
assignments
=
(=]
X = <
Content S £ g | Tasks for individual
o o § 2 | o % = work
| s S| 5|8 | @ = S
2| 5 =| X| o £ = =
S| S |E|S|] |2 |58 |E
JlF el =la | £ |0 =
1. Programming languages. Classification Program writting
of programming languages. Low-level 2 4 6 10
and high-level programming languages.
Basic components of programming
languages. GUI.
2. The most popular programming 2 2 4 10 | Program writting
languages: C/C++, Java, C#. Specific
features of these programming languages.
3. Fundamentals of object-oriented Program writting
programming: the concept of an object; 4 8 12 20
the concept of a class; object-oriented
programming; encapsulation; inheritance;
advantages of object-oriented
programming.
4 Fundamentals of object-oriented 4 8 12 18 | Program writting and
programming (2): polymorphism; code analysis
templates; virtual functions;
object instances.
5. Principles of creating a graphical user Program code analysis,
interface: principles of graphical 2 4 6 10 | Principles of software
interfaces; window; components; events system development,
and their processing; parallel processing preparation for an
of multiple tasks. exam.
6. Principles of automatic code Program code analysis,
generation: advantages of code reuse; principles of software
automatic code generation; limitations of | 2 4 6 10 | System development,
automatic code generation; automatic preparation for an exam
code generation tools.
Exam 2 2 5 Preparation for an
exam
Total | 16 32 48 85
Assessment strategy W;)ght Deadline Assessment criteria
15 Ona The student is given a task to write a program within 1
Control work (K1) predefined | hour. It is graded on a 10-point scale according to the
date following criteria:
implementation of functional requirements;
accuracy of algorithm implementation;
accuracy of program code.
Control work (K2) 15 Ona The student is given a task to write a program within 1
predefined | hour. It is graded on a 10-point scale according to the
date following criteria:

3

implementation of functional requirements;
accuracy of algorithm implementation;
accuracy of program code.

Individual program
preparation (S)

20 Ona
predefined
date

Students are given an assignment to create a decision
algorithm, define functional requirements, and write a
program prototype in the programming language of their
choice. They are graded on a 10-point scale according to
the following criteria:

accuracy of algorithm implementation;

accuracy of program code;

efficiency of program code;

implementation of functional requirements;

ability to modify the code;

program reliability;

program functionality

The use of code generation tools is prohibited.

Exam

50 Ona
predefined
date

The test consists of 10 closed-ended questions (of varying
difficulty, ranging from understanding algorithms to
knowledge of theoretical foundations), each worth one
point.

The scoring is as follows: each question is worth one point.
Exam scores are weighted with a coefficient of 0.5 in the
final grade.

Final mark: 0.15*K1+0.15*K2+0.20*S+0.50*E
Extern exam assessment strategy: Not applicable
Using of Al tools not permited if not stated otherwise by lecturer

ishi) Issue of a periodical or ishi
Author (-s) PUb)I,S:,lng Title volume of a publication PUbIIShm%i?]?(use orweb
Required reading
Mak R. 2024 Object-Oriented New York: Manning
Software Design in Publications
C++
Harwani B.M. 2015 Learning object- Boston, MA : Cengage
oriented programming Learning PTR
in C#5.0
McLaughlin B., | 2008 Head-First Object O’Reilly
Police G. Oriented Analysis and
Design
Recommended reading
Wagner B. 2010 Effective C# New York: Addison-
Wesley.
(https://livres.ycharbi.fr/Li
vres/ebook%20informatiqu
e/Informatique/Langages/
C%23%2C%?20.Net%20Fr
amework/Effective%20C
%23%2C%2050%20Speci
fic%20Ways%20t0%20Im
prove%20your%20C%23
%20%282nd%20ed%2C%
202010%29%20-
%20%5BAddison-
Wesley%5D%20-
%20Bill%20Wagner.pdf)
Gamma E., 2012 Design Patterns: New York: Wiley.
Helm R., Elements of Reusable (http://lwww.uml.org.cn/c
Johnsin R., Object-Oriented %2B%2B/pdf/DesignPatte
Vlissides J. Software rns.pdf)

Programming in C++

Horstmann C. 2021 Big C++. Late Objects New York: Wiley.
(https://horstmann.com/big
cpp/bigeppl.html)

Liberty J., 2008 Learning C# Boston: O°Rilley.

McDonald B.

Lafore R. 2002 Object-Oriented https://docs.google.com/fil

e/d/0B21HoBq6u9TsUHN

gS3JIUmFuamc/view?reso
urcekey=0-

MY let9RIjEukd6CvLEHU
bw

NOTE: Including Open Educational Resources in the reading list is recommended

