
 

   

 

 

 

 

 

COURSE UNIT (MODULE) DESCRIPTION 

 

Course unit (module) title Code 

PROGRAMMING LANGUAGES AND OBJECT-ORIENTED PROGRAMMING  

 

Academic staff Core academic unit(s) 

Coordinating: assoc. prof. Vytautas Rudžionis 

 

Other: 

Kaunas Faculty 

Institute of Social Sciences and Applied Informatics 

Muitinės g. 8, LT–44280 Kaunas 

 

Study cycle Type of the course unit 

First Mandatory 

 

Mode of delivery 
Semester or period  
when it is delivered 

Language of instruction 

In class 2 semester English 

 

Requisites 

Prerequisites: 

Students must have mastered the basics of algorithm 

theory and data structures, computer architecture, and 

programming. 

Co-requisites (if relevant): 

 

 

Number of ECTS credits 

allocated 

Student’s workload 

(total) 
Contact hours Individual work 

5 133 48 85 

 

Purpose of the course unit 

Develop the ability to program in high-level programming languages, develop the ability to understand and analyze 

their organizational principles and programming paradigms (procedural and object-oriented programming); develop 

the ability to understand, analyze, and apply the principles of object-oriented programming and the principles of 

graphical interface design; develop the ability to create simple software applications and generate program code. 

 

Learning outcomes of the course unit Teaching and learning methods Assessment methods 

Will be able to transform an algorithm 

presented in program code, be able to 

select the most effective software tools 

for a given algorithm. 

Lectures, tutorials, laboratory work, 

problem solving, active learning 

methods (algorithm analysis, program 

prototype writing, system prototype 

design) 

Laboratory work, laboratory 

work defenses, independent 

systems analysis, problem 

solving, test work, exam 

Will be able to apply object-oriented 

programming principles to the given 

algorithm, be able to select more 

effective program development methods. 

Lectures, tutorials, laboratory work, 

problem solving, active learning 

methods (algorithm analysis, program 

prototype writing, system prototype 

design) 

Laboratory work, laboratory 

work defenses, independent 

systems analysis, problem 

solving, test work, exam 

 

Will be able to write medium-complexity 

programs, evaluate program compliance 

with specifications, and know some of 

the best programming practices. 

Lectures, tutorials, laboratory work, 

problem solving, active learning 

methods (algorithm analysis, program 

prototype writing, system prototype 

design) 

Laboratory work, laboratory 

work defenses, independent 

systems analysis, problem 

solving, test work, exam 

 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Content 

Contact hours 
Individual work: time and 

assignments 

L
ec

tu
re

s 

T
u

to
ri

al
s 

S
em

in
ar

s 

W
o

rk
sh

o
p

s 

L
ab

o
ra

to
ry

 w
o

rk
 

In
te

rn
sh

ip
 

C
o

n
ta

ct
 h

o
u

rs
, 

to
ta

l 

In
d

iv
id

u
a

l 
w

o
rk

 

Tasks for individual 

work 

 

1. Programming languages. Classification 

of programming languages. Low-level 

and high-level programming languages. 

Basic components of programming 

languages. GUI. 

 
2 

   
4 

   
6 

 
10 

Program writting 

2. The most popular programming 

languages: C/C++, Java, C#. Specific 

features of these programming languages. 

2   2   4 10 Program writting 

3. Fundamentals of object-oriented 

programming: the concept of an object; 

the concept of a class; object-oriented 

programming; encapsulation; inheritance; 

advantages of object-oriented 

programming. 

 
4 

   
8 

   
12 

 
20 

Program writting 

4 Fundamentals of object-oriented 

programming (2):  polymorphism; 

templates; virtual functions; 

object instances. 

4   8   12 18 Program writting and 

code analysis 

5. Principles of creating a graphical user 

interface: principles of graphical 

interfaces; window; components; events 

and their processing; parallel processing 

of multiple tasks. 

 
2 

   
4 

   
6 

 
10 

Program code analysis, 

principles of software 

system development, 

preparation for an 

exam. 

6. Principles of automatic code 

generation: advantages of code reuse; 

automatic code generation; limitations of 

automatic code generation; automatic 

code generation tools. 

 
 

2 

   
 

4 

   
 

6 

 
 

10 

Program code analysis, 

principles of software 

system development, 

preparation for an exam 

Exam    2   2 5 Preparation for an 

exam 

Total 16   32   48 85  

 

Assessment strategy 
Weight 

% 
Deadline Assessment criteria 

 

Control work (K1) 

15 On a 

predefined 

date 

The student is given a task to write a program within 1 

hour. It is graded on a 10-point scale according to the 

following criteria: 

implementation of functional requirements; 

accuracy of algorithm implementation; 

accuracy of program code. 

Control work (K2) 

 

15 On a 

predefined 

date 

The student is given a task to write a program within 1 

hour. It is graded on a 10-point scale according to the 

following criteria: 



3 

 

 

implementation of functional requirements; 

accuracy of algorithm implementation; 

accuracy of program code. 

 

Individual program 

preparation (S) 

20 On a 

predefined 

date 

Students are given an assignment to create a decision 

algorithm, define functional requirements, and write a 

program prototype in the programming language of their 

choice. They are graded on a 10-point scale according to 

the following criteria: 

 accuracy of algorithm implementation; 

accuracy of program code; 

efficiency of program code;  

implementation of functional requirements;  

ability to modify the code;  

program reliability;  

program functionality 

The use of code generation tools is prohibited. 

Exam 50 On a 

predefined 

date 

The test consists of 10 closed-ended questions (of varying 

difficulty, ranging from understanding algorithms to 

knowledge of theoretical foundations), each worth one 

point. 

The scoring is as follows: each question is worth one point. 

Exam scores are weighted with a coefficient of 0.5 in the 

final grade. 

Final mark: 0.15*K1+0.15*K2+0.20*S+0.50*E 

Extern exam assessment strategy: Not applicable 

Using of AI tools not permited if not stated otherwise by lecturer 

 

Author (-s) 
Publishing 

year 
Title 

Issue of a periodical or 

volume of a publication  
Publishing house or web 

link  

Required reading 

Mak R. 2024 Object-Oriented 

Software Design in 

C++ 

  New York: Manning 

Publications 

Harwani B.M. 2015 Learning object-

oriented programming 

in C# 5.0 

 Boston, MA : Cengage 

Learning PTR 

McLaughlin B., 

Police G. 

2008 Head-First Object 

Oriented Analysis and 

Design 

 O’Reilly 

Recommended reading 

Wagner B. 2010 Effective C#  New York: Addison-

Wesley. 

(https://livres.ycharbi.fr/Li

vres/ebook%20informatiqu

e/Informatique/Langages/

C%23%2C%20.Net%20Fr

amework/Effective%20C

%23%2C%2050%20Speci

fic%20Ways%20to%20Im

prove%20your%20C%23

%20%282nd%20ed%2C%

202010%29%20-

%20%5BAddison-

Wesley%5D%20-

%20Bill%20Wagner.pdf) 

Gamma E., 

Helm R., 

Johnsin R., 

Vlissides J. 

2012 Design Patterns: 

Elements of Reusable 

Object-Oriented 

Software 

 New York: Wiley. 

(http://www.uml.org.cn/c

%2B%2B/pdf/DesignPatte

rns.pdf) 



4 

 

 

Horstmann C. 2021 Big C++. Late Objects  New York: Wiley. 

(https://horstmann.com/big

cpp/bigcpp1.html) 

Liberty J., 

McDonald B. 

2008 Learning C#  Boston: O‘Rilley. 

Lafore R. 2002 Object-Oriented 

Programming in C++ 

 https://docs.google.com/fil

e/d/0B21HoBq6u9TsUHh

qS3JIUmFuamc/view?reso

urcekey=0-

MYlet9RIjEukd6CvLEHU

bw 

NOTE: Including Open Educational Resources in the reading list is recommended 

 


