%UNIV€@

1y
v 1579)
s 3
N 7
= 2]
% s
J?S]TAS \]\\’

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Object-Oriented Programming ITOP

Annotation

Course focuses on essential object-oriented concepts and principles, encouraging information hiding and abstraction-based
thinking, and provides ideas and techniques to improve code readability, maintenance, and adaptability to change. Course
uses C++ and Java programming languages, and also addresses various tools and technologies as well as fundamental
sofware design patterns as solutions for typical problems. Course is intended for those having some background in
programming (ideally C, C++, Java, or a similar language).

Lecturer Department where the course unit is delivered

Coordinator(s): Irmantas Radavicius Department of Computer Science 11
Faculty of Mathematics and Informatics
Vilnius University

Cycle Type of the course unit
First Compulsory
Mode of delivery Semester or period when the course Languages of instruction
unit is delivered
Auditoriné 2" semester English and Lithuanian

Course requirements

Prerequisites: Programming fundamentals and basic IT knowledge

Number of ECTS credits Student’s workload Contact hours Individual work
allocated
5 141 66 75

Purpose of the course unit: programme competences to be developed

Generic competences to be developed
e Ability for abstract thinking , processing and analysing information (BK3)
e Ability to use information and communications technologies (BKS5)
Subject-specific competences to be developed
e Ability to apply general methods of the program design, make and analyse software requirements (DK1)
e Ability to analyse the algorithmic process of the task based on the general properties of the algorithm (DK2)
e Ability to develop the software project (or IT service) and to write its specification (DK3)

Learning outcomes of the course unit Teaching and learning Assessment methods
methods

Ability to understand, write, modify, and execute given code

(in C++ or Java) Lectures .

- P - . . Code reviews
Ability to understand key concepts and principles of object Studies of literature Programming tests, exam
oriented programming paradigm, recognize and apply them in Programing projects ’
practice
Ability to test and review given code, evaluate its
correspondence to the requirements and good practices Programing projects Programming projects
Ability to understand, write, and evaluate reports and Code reviews Code reviews

specifiations and their correspondence to the requirements
and the provided code

Ability to search the official documentation for packages, . .
Studies of literature .
classes, methods, examples, and select the necessary . . Programming tests, exam
. . Programing projects
information.
Contact hours Individual work: time and
assignments
Course content: breakdown of the topics 4 <
- o z e
g 5 2 E Assignments
= " - 2 = =
172} < & 153 o - -
e = S R7 = 2 =
g z é 2 S s Z
5] Q o o =]
S 1S |R |& |3 |S |5
Course overview. Programming primitives. Data 4 4 8 4
types, values and variables. Control structures.
Style requirements and good practices. Quality 4 4 8 4
code. Code reviews and unit testing.
Object-oriented programming paradigm. Classes 4 4 8 4
and objects. Fields and methods. Instance and static
members, access control, encapsulation. Principle
of information hiding. Object lifecycle, Individual projects
constructors and destructors, memory management.
Exception handling. Multifile programs, modular 4 4 8 4
programming. Input and output streams. User
interface.
Composition. Delegation and single responsibility | 4 4 8 4
principle. Containers. Shallow and deep object
copying.
Object oriented analysis and design. UML 4 4 8 4
language and tools, fundamental UML diagrams .
- : Team project
Abstract classes and interfaces. Inheritance. 4 4 8 4
Polymorphism. Object-oriented principles.
Programming tests and feedback 4 4 8 4
Programming projects 8
Exam 2 3
Total: 32 32 66 75
Assessment Weight | Deadline Assessment criteria
strategy (perc.)
Individual 30 During the semester During the semester each student is asked to provide five
projects submissions for three different projects, as well as five types
of reviews for other people in the course. Each stage (out of
5) is worth 0.6 points.
Team project 30 Last month of the semester The team project is carried out in small groups of students

(2-4 people). The project has three parts (each worth 1
point):

1)

2)
3)

project proposal (team roles, UML diagrams, proof
of concept etc)

project essentials (essential functionality)

project demonstration (demonstration and
documentation)

Each student is evaluated individually, based on their
contribution and competence corresponding their role(s) in
the current project stage, their own work as well as quality
of the reviews given for other projects in the course.

Programming 20 First test — Week 7
tests Second test — Week 15
Exam 20 During the exam session

Each test is worth 1 point, while exam is worth 2 points.
Each of them contains multiple problems of various types
and difficulty to solve (50%) as well as a programming
assignment (50%). Evaluation is based on the correctness of
the solution as well as (for the programming assignment)
adherence to proposed good coding practices and general
code quality. If a student gets less than 50% of the maximal
score, it is evaluated as 0.
To be allowed to take the exam, during the semester each
student has to provide at least 24 (proper) reviews and make
at least 5 (proper) submissions (out of 8 for both individual
and team projects). To pass the course, the total sum of
points for the exam has to be at least 50% of the maximum,
otherwise the student must repeat the course.

Externe students

This course can be attended by externe, provided it was attended normally before, and the
points received previously are considered appropriate. In such case the externe gets to only
repeat the exam. For this, the externe must inform the lecturer in the beginning of the
semester, getting a written confirmation with an account of points to be transfered from an
earlier year. If the amount of points is not sufficient and thus work and re-evaluation during
the semester is required, externe attendance is not allowed.

Author Year Title Issue Publishing house
or vol. | or Internet site
Required reading
A. Brilingaité 2012 Object-Oriented Programming.
Study Guide
Bruce Eckel 2000 Thinking in C++ 2nd ed. | https://archive.org/details/TI
CPP2ndEdVolOne
Bruce Eckel 2003 Thinking in C++, Volume Isted. | https://archive.org/details/TI
Two: Practical Programming CPP2ndEdVolTwo
Oracle The JavaTM Tutorials https://docs.oracle.com/javas
e/tutorial/index.html
Bruce Eckel 2006 Thinking in Java 4th ed. | Pearson
Recommended reading
Erich Gamma, Richard 1994 Design Patterns: Elements of Isted. | Addison-Wesley
Helm, Ralph Johnson, Reusable Object-Oriented Professional
John Vlissides Software
C. Larman 2015 Applying UML and Patterns: An Prentice-Hall

Introduction to Object-Oriented
Analysis and Design and Iterative
development

https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolTwo
https://archive.org/details/TICPP2ndEdVolTwo
https://docs.oracle.com/javase/tutorial/index.html
https://docs.oracle.com/javase/tutorial/index.html

