

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Object-Oriented Programming in C++

Annotation

The course covers essential programming concepts and principles that encourage abstraction-based thinking and implements

the principle of information hiding, thus facilitating code quality, readability, ease of maintenance and ease of change. During

the course, student learns various tools and technologies, and studies object-oriented design patterns that allow to construct

standard solutions to typical problems. To take the course, students are expected to already have the fundamentals of

programming – the course can be viewed as a natural extension of a course on Procedural Programming Fundamentals taught

in previous semester.

Lecturer(s) Department where the course unit is delivered

Coordinator: Irmantas Radavičius

Other lecturers: Viktoras Golubevas

Faculty of Mathematics and Informatics

Vilnius University

Cycle Type of the course unit

First Optional, individual studies

Mode of delivery Semester or period when the course unit

is delivered

Language of instruction

Mixed 2nd semester Lithuanian, English

Prerequisites

Prerequisites: Procedural programming Other requirements: none

Number of credits allocated Workload of the

student

Contact hours Individual work

5 134 66 68

Purpose of the course unit: program competences to be developed

The purpose of the course unit:

• To familiarize oneself with the C++ programming language, STL and other C++ libraries

• To familiarize oneself with object-oriented and generic programming paradigms

• To ground oneself in fundamentals of object-oriented analysis and design, and learn basics of UML language

Generic competences:

• will be able to organise their own work independently (GK 1.3)

• will recognize of the need for, and engage in life-long learning (GK 2.1)

• will be able to independently acquire new knowledge, methods and tools and apply them in practice. (GK 2.3)

• will understand professional and ethical responsibility (GK 3.1)

Specific competences:

• will be able to apply mathematical foundations, knowledge of science and engineering, computer science theory, and

algorithmic principles in software systems development (SK 4.2)

• will be able to reason at abstract level, to use formal notation, to prove the correctness, and to apply formalisation and

specification for real-world problems (SK 4.3)

• will be able to use existing hardware, software and application systems, to identify, understand and apply the promising

technologies (SK 6.3)

• will be aware of project management, quality assurance, and process improvement practices and develop abilities to

apply them (SK 6.6.)

Learning outcomes of the course unit:

students will be able to

Teaching and learning

methods
Assessment methods

• apply object-oriented techniques to model real world

situations

• understand, modify and create source code in C++

programming language

• create, test, and document C++ applications

Lectures

Assignments

Individual work

Projects

(individually and in groups)

Exam (written)

Course content: breakdown of the topics

Contact hours

L
ec

tu
re

s

T
u

to
ri

al
s

S
em

in
ar

s

P
ra

ct
ic

e

L
ab

o
ra

to
ry

 w
o

rk

C
o

n
ta

ct
 h

o
u

rs

2

 2 4

2

 2 4

2

 2 4

2

 2 4

2

 2 4

2

 2 4

2

 2 4

2 2 4

2 2 4

2

 2 4

2

 2 4

2 2 4

2

 2 4

2

 2 4

2

 2 4

2 2 4

 2

32 32 66

Individual work: time and

assignments

In
d

iv
id

u
a

l
w

o
rk

Assignments

Course overview. Introduction. Object-oriented

programming. Object-oriented programming

languages. C++ history. C++ as a “better C”.

4

Individual reading

Projects

(individually and in

groups)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

8

68

Classes and Objects. Fields and Methods. Access

control. Object lifecycle. Constructors and

Destructors. Static elements.

Multiple file applications. Namespaces. Header

files. Error correction and prevention. Unit tests.

Intermediate output. Error handling. Assertions.

Exception handling.

Methods, Method overloading. Constants, Constant

fields and methods. Parameter passing. Pointers

and References. Operator overloading. Friend

classes and functions.

Composition. Types of composition. Object

shallow and deep copy. Inner classes. Arrays.

Standard containers.

Object-oriented analysis and design. UML

language. UML use case, activity, class, and

sequence diagrams.

Generic programming. Function and class

templates.

STL containers. STL iterators.

STL functional objects. STL algorithms.

Inheritance. Method overriding. Virtual methods.

Polymorphism. Typecasting.

Types of inheritance. Access control. “Diamond

problem”. Virtual inheritance.

Abstract classes and related design patterns.

Object creation and copying, and related design

patterns.

Revisiting object-oriented analysis and design,

remaining important design patterns.

Resource management. Exception handling and

safety.

Preparation for the exam.

Exam (written).

Total:

Assessment

strategy

Weight,

perc.

Deadline Assessment criteria

Projects

(individually and

in groups)

60 During the semester

students get assignments

that must be submitted

following the order

announced in the beginning

of the semester

During the semester student is expected to participate in two

projects, each of which is assessed in three stages.

Accordingly, the total number of assignments is 6 (six), and

each of them has an equal weight (10%). First project is an

individual programming assignment, to create a package of

classes to model a specific real-world situation (assessed in

three stages, based on adhering to the deadlines and

requirements for each stage). Second project can be a team

project (in that case, the assessment considers the degree of

the contribution for each member), for the final stage

students must submit an application, built according to the

principles of object-oriented programming, analysis, and

design. To be allowed to take an exam, students must submit

(and successfully pass) at least 3 (three) assignments. The

lecturer can give up to 1 bonus extra point, based on the

effort and results demonstrated by the student.

Exam (written) 40 June During the exam, students solve problems of various types

and difficulty. Exam consists of two parts: the test (students

answer questions of various types) and writing the code

(students must submit a working code satisfying the

requirements provided).

Extern The student can repeat the course externally, if before they have participated fully and they

accept the previously collected number of points. In this case, the points get accounted for

and the student only repeats the exam. The student who is taking the course unit externally

must inform the lecturer in the beginning of the semester and get the written consent with

the above-mentioned number of points confirmed. If the student has not collected the

minimal number of points required to pass, or the number of points collected does not suit

the student, the subject cannot be repeated externally.

Author Publi

shing

year

Title Numbe

r or

volume

Publisher or URL

Required reading

Bjarne Stroustrup 2013 The C++ Programming

Language

4th ed. Addison-Wesley

Paul J. Deitel,

Harvey M. Deitel

2016 C++ How to Program 10th

ed.

Pearson

Recommended reading

Bruce Eckel 2000 Thinking in C++ 2nd ed. https://archive.org/details/TI

CPP2ndEdVolOne

Bruce Eckel 2003 Thinking in C++, Volume

Two: Practical Programming

1st ed. https://archive.org/details/TI

CPP2ndEdVolTwo

Erich Gamma, Richard

Helm, Ralph Johnson,

John Vlissides

1994 Design Patterns: Elements of

Reusable Object-Oriented

Software

1st ed. Addison-Wesley

https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolTwo
https://archive.org/details/TICPP2ndEdVolTwo

