31579
5 S
g %
g 2
2 Wy S
K e
SITAS A\

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Object-Oriented Programming in C++

Annotation

The course covers essential programming concepts and principles that encourage abstraction-based thinking and implements
the principle of information hiding, thus facilitating code quality, readability, ease of maintenance and ease of change. During
the course, student learns various tools and technologies, and studies object-oriented design patterns that allow to construct
standard solutions to typical problems. To take the course, students are expected to already have the fundamentals of
programming — the course can be viewed as a natural extension of a course on Procedural Programming Fundamentals taught
in previous semester.

Lecturer(s) Department where the course unit is delivered

Coordinator: Irmantas Radavi¢ius Faculty of Mathematics and Informatics
Other lecturers: Viktoras Golubevas Vilnius University

Cycle Type of the course unit

First Optional, individual studies

Mode of delivery Semester or period when the course unit Language of instruction
is delivered
Mixed 2nd semester Lithuanian, English

Prerequisites

Prerequisites: Procedural programming Other requirements: none
Number of credits allocated Workload of the Contact hours Individual work
student
5 134 66 68

Purpose of the course unit: program competences to be developed

The purpose of the course unit:
e To familiarize oneself with the C++ programming language, STL and other C++ libraries
e To familiarize oneself with object-oriented and generic programming paradigms
e To ground oneself in fundamentals of object-oriented analysis and design, and learn basics of UML language
Generic competences:
e will be able to organise their own work independently (GK 1.3)
e will recognize of the need for, and engage in life-long learning (GK 2.1)
e will be able to independently acquire new knowledge, methods and tools and apply them in practice. (GK 2.3)
e will understand professional and ethical responsibility (GK 3.1)
Specific competences:
e will be able to apply mathematical foundations, knowledge of science and engineering, computer science theory, and
algorithmic principles in software systems development (SK 4.2)
e will be able to reason at abstract level, to use formal notation, to prove the correctness, and to apply formalisation and
specification for real-world problems (SK 4.3)
o will be able to use existing hardware, software and application systems, to identify, understand and apply the promising
technologies (SK 6.3)

o will be aware of project management, quality assurance, and process improvement practices and develop abilities to
apply them (SK 6.6.)

Learning outcomes of the course unit:
students will be able to

Teaching and learning
methods

Assessment methods

apply object-oriented techniques to model real world
situations

understand, modify and create source code in C++
programming language

create, test, and document C++ applications

Lectures
Assignments
Individual work

Projects
(individually and in groups)
Exam (written)

Contact hours

Individual work: time and
assignments

Course content: breakdown of the topics ;—;3 - é
s 5|3 Assignments
Py < <
7] K%) <4 o — S
4] < < 3 = |5} =
2| s|E|8|8|£|z2
(&) —
1|8 |&|3|8|2
Course overview. Introduction. Object-oriented 2 2 4 4
programming. Object-oriented programming
languages. C++ history. C++ as a “better C”.
Classes and Objects. Fields and Methods. Access 2 2 4 4
control. Object lifecycle. Constructors and
Destructors. Static elements.
Multiple file applications. Namespaces. Header 2 2 4 4
files. Error correction and prevention. Unit tests.
Intermediate output. Error handling. Assertions.
Exception handling.
Methods, Method overloading. Constants, Constant | 2 2 4 4
fields and methods. Parameter passing. Pointers
and References. Operator overloading. Friend
classes and functions.
Composition. Types of composition. Object 2 2 4 4
shallow and deep copy. Inner classes. Arrays.
Standard containers.
Object-oriented analysis and design. UML 2 2 4 4 Individual reading
language. UML use case, activity, class, and Projects
sequence diagrams. (individually and in
Generic programming. Function and class 2 2 4 4 groups)
templates.
STL containers. STL iterators. 2 2 4 4
STL functional objects. STL algorithms. 2 2 4 4
Inheritance. Method overriding. Virtual methods. 2 2 4 4
Polymorphism. Typecasting.
Types of inheritance. Access control. “Diamond 2 2 4 4
problem”. Virtual inheritance.
Abstract classes and related design patterns. 2 2 4 4
Object creation and copying, and related design 2 2 4 4
patterns.
Revisiting object-oriented analysis and design, 2 2 4 4
remaining important design patterns.
Resource management. Exception handling and 2 2 4 4
safety.
Preparation for the exam. 2 2 4 8
Exam (written). 2
Total: 32 32 66 68

Assessment Weight, | Deadline Assessment criteria

strategy perc.

Projects 60 During the semester | During the semester student is expected to participate in two
(individually and students get assignments | projects, each of which is assessed in three stages.

in groups) that must be submitted | Accordingly, the total number of assignments is 6 (six), and

following the order
announced in the beginning
of the semester

each of them has an equal weight (10%). First project is an
individual programming assignment, to create a package of
classes to model a specific real-world situation (assessed in
three stages, based on adhering to the deadlines and
requirements for each stage). Second project can be a team
project (in that case, the assessment considers the degree of
the contribution for each member), for the final stage
students must submit an application, built according to the
principles of object-oriented programming, analysis, and
design. To be allowed to take an exam, students must submit
(and successfully pass) at least 3 (three) assignments. The
lecturer can give up to 1 bonus extra point, based on the
effort and results demonstrated by the student.

Exam (written) 40

June

During the exam, students solve problems of various types
and difficulty. Exam consists of two parts: the test (students
answer questions of various types) and writing the code
(students must submit a working code satisfying the
requirements provided).

Extern The student can repeat the course externally, if before they have participated fully and they
accept the previously collected number of points. In this case, the points get accounted for
and the student only repeats the exam. The student who is taking the course unit externally
must inform the lecturer in the beginning of the semester and get the written consent with
the above-mentioned number of points confirmed. If the student has not collected the
minimal humber of points required to pass, or the number of points collected does not suit
the student, the subject cannot be repeated externally.

Author Publi | Title Numbe | Publisher or URL
shing ror
year volume

Required reading

Bjarne Stroustrup 2013 | The C++ Programming 4thed. | Addison-Wesley

Language

Paul J. Deitel, 2016 | C++ How to Program 10th Pearson

Harvey M. Deitel ed.

Recommended reading

Bruce Eckel 2000 | Thinking in C++ 2nd ed. | https://archive.org/details/TlI

CPP2ndEdVolOne
Bruce Eckel 2003 | Thinking in C++, Volume Ist ed. https://archive.org/details/TI
Two: Practical Programming CPP2ndEdVolTwo

Erich Gamma, Richard 1994 | Design Patterns: Elements of Isted. | Addison-Wesley

Helm, Ralph Johnson, Reusable Object-Oriented

John Vlissides Software

https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolTwo
https://archive.org/details/TICPP2ndEdVolTwo

